Produit scalaire

I Norme d'un vecteur

<u>Définition</u>: Soit A et B deux points. La norme de \overrightarrow{AB} , notée $||\overrightarrow{AB}||$, est définie par $||\overrightarrow{AB}|| = AB$ Soit \overrightarrow{u} un vecteur et deux points A et B tels que $\overrightarrow{u} = \overrightarrow{AB}$. La norme de \overrightarrow{u} est alors définie par $||\overrightarrow{u}|| = AB$.

Propriétés :

- Si $\vec{u}(x; y)$ dans un repère orthonormé alors $||\vec{u}|| = \sqrt{x^2 + y^2}$.
- Pour tout réel k, on a $||k\vec{u}|| = |k| \times ||\vec{u}||$.

$$\underline{Exemple} : A(-1;2) \text{ et } B(0;3) \text{ alors } \|-2\overrightarrow{AB}\|$$

$$\overrightarrow{AB}(0+1;3-2)donc \overrightarrow{AB}(1;1) \text{ et } -2\overrightarrow{AB}(-2;-2) \text{ et donc } \|-2\overrightarrow{AB}\| = \sqrt{4+4} = \sqrt{8} = 2\sqrt{2}$$

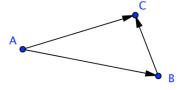
II Définition du produit scalaire

Définition:

- Le <u>produit scalaire</u> de \vec{u} et \vec{v} , noté $\vec{u}.\vec{v}$, est défini par : $\vec{u}.\vec{v} = \frac{1}{2}(\|\vec{u} + \vec{v}\|^2 \|\vec{u}\|^2 \|\vec{v}\|^2)$
- On écrit : \vec{u} . $\vec{u} = \vec{u}^2 = ||\vec{u}||^2$ le <u>carré</u> scalaire

Remarques:

- Si A, B et C sont trois points du plan, $\overrightarrow{AB}.\overrightarrow{BC} = \frac{1}{2}(AC^2 AB^2 BC^2)$.
- Le produit scalaire de deux vecteurs n'est pas un vecteur mais <u>un nombre</u> réel



Propriétés:

- Le produit scalaire est commutatif, c'est-à-dire que $\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$
- Si $\overrightarrow{u} = \overrightarrow{0}$ ou $\overrightarrow{v} = \overrightarrow{0}$, alors $\overrightarrow{u} \cdot \overrightarrow{v} = 0$

Dem:
$$\vec{v} \cdot \vec{u} = \frac{1}{2} (\|\vec{v} + \vec{u}\|^2 - \|\vec{v}\|^2 - \|\vec{u}\|^2) = \vec{u} \cdot \vec{v}$$

$$\vec{u} \cdot \vec{0} = \frac{1}{2} (\|\vec{u}\|^2 - \|\vec{u}\|^2 - \|\vec{0}\|^2) = 0$$

III Produit scalaire et coordonnées

Dans cette partie, toutes les coordonnées sont données dans un **repère orthonormé** du plan.

<u>Propriété</u>: Soit $\vec{u}(x;y)$ et $\vec{v}(x';y')$. Le produit scalaire de \vec{u} et \vec{v} est donné par : $\vec{u}.\vec{v} = xx' + yy'$.

Dem:

$$\overrightarrow{u} \cdot \overrightarrow{v} = \frac{1}{2} (\|\overrightarrow{u} + \overrightarrow{v}\|^2 - \|\overrightarrow{u}\|^2 - \|\overrightarrow{v}\|^2)
\|\overrightarrow{u} + \overrightarrow{v}\|^2 = (x + x')^2 + (y + y')^2 = x^2 + x'^2 + 2xx' + y^2 + y'^2 + 2yy' \operatorname{car} \overrightarrow{u} + \overrightarrow{v} (x + x', y + y')
\overrightarrow{u} \cdot \overrightarrow{v} = \frac{1}{2} (x^2 + x'^2 + 2xx' + y^2 + y'^2 + 2yy' - x^2 - y^2 - x'^2 - y'^2)
\overrightarrow{u} \cdot \overrightarrow{v} = \frac{1}{2} (2xx' + 2yy') = xx' + yy'$$

IV Autres expressions du produit scalaire

Propriété : Pour deux vecteurs \vec{u} et \vec{v} non nuls : $\vec{u} \cdot \vec{v} = ||\vec{u}|| \times ||\vec{v}|| \times cos(\vec{u}, \vec{v})$

Dem voir Activité p 215

Remarque : Cette formule permet de déterminer un angle avec le produit scalaire

V Cas particuliers

<u>Définition</u>: Les vecteurs \overrightarrow{AB} et \overrightarrow{CD} sont <u>orthogonaux</u> si et seulement si les droites (AB) et (CD) sont perpendiculaires

Propriété : \overrightarrow{u} et \overrightarrow{v} sont 2 vecteurs **non nuls**

- \vec{u} et \vec{v} sont colinéaires et de même sens si et seulement si $\vec{u} \cdot \vec{v} = ||\vec{u}|| \times ||\vec{v}||$
- \vec{u} et \vec{v} sont colinéaires et sont de sens opposés si et seulement si $\vec{u} \cdot \vec{v} = -\|\vec{u}\| \times \|\vec{v}\|$.
- \overrightarrow{u} et \overrightarrow{v} sont orthogonaux si et seulement si \overrightarrow{u} . \overrightarrow{v} = 0

 $\underline{\text{Dem}}$: en utilisant \overrightarrow{u} . $\overrightarrow{v} = ||\overrightarrow{u}|| \times ||\overrightarrow{v}|| \times \cos(\overrightarrow{u}, \overrightarrow{v})$

- \vec{u} et \vec{v} sont colinéaires et de même sens : $\vec{u} = \mathbf{k} \ \vec{v}$, avec k > 0 si et seulement si $(\vec{u}, \vec{v}) = \hat{0}$ si et seulement si $\cos(\vec{u}, \vec{v}) = 1$ si et seulement si $\vec{u} \cdot \vec{v} = ||\vec{u}|| \times ||\vec{v}||$ car $||\vec{u}|| \neq 0$ et $||\vec{v}|| \neq 0$ (\vec{u} et \vec{v} sont non nuls)
- \vec{u} et \vec{v} sont colinéaires de sens contraire : $\vec{u} = k \ \vec{v}$, avec k < 0 si et seulement si $(\vec{u}, \vec{v}) = \pi$ si et seulement si $\cos(\vec{u}, \vec{v}) = -1$ si et seulement si $\vec{u} \cdot \vec{v} = -\|\vec{u}\| \times \|\vec{v}\|$ car $\|\vec{u}\| \neq 0$ et $\|\vec{v}\| \neq 0$ (\vec{u} et \vec{v} sont non nuls)
- \vec{u} et \vec{v} sont orthogonaux si et seulement si $(\vec{u}, \vec{v}) = \frac{\pi}{2}$ ou $(\vec{u}, \vec{v}) = \frac{3\pi}{2}$ si et seulement si $\cos(\vec{u}, \vec{v}) = 0$ si et seulement si $\vec{u} \cdot \vec{v} = 0$ car $||\vec{u}|| \neq 0$ et $||\vec{v}|| \neq 0$ (\vec{u} et \vec{v} sont non nuls)

<u>Propriété</u>: Les droites (AB) et (CD) sont perpendiculaires si et seulement si \overrightarrow{AB} . $\overrightarrow{CD} = 0$

Remarques:

Deux vecteurs $\vec{u}(x; y)$ et $\vec{v}(x'; y')$ sont orthogonaux si et seulement si xx' + yy' = 0. Par convention, le vecteur nul est orthogonal à tous les vecteurs.

VI <u>Propriété algébrique</u>:

Propriétés:

1)
$$\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$$

2)
$$\vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w}$$

3)
$$(\vec{u} + \vec{v}) \cdot \vec{w} = \vec{u} \cdot \vec{w} + \vec{v} \cdot \vec{w}$$

4)
$$(a\vec{u}).(b\vec{v}) = (ab)\vec{u}.\vec{v}$$

5)
$$(\vec{u} + \vec{v})^2 = \vec{u}^2 + \vec{v}^2 + 2 \vec{u} \cdot \vec{v}$$

6)
$$(\vec{u} - \vec{v})^2 = \vec{u}^2 + \vec{v}^2 - 2 \vec{u} \cdot \vec{v}$$

7)
$$(\vec{u} + \vec{v}) \cdot (\vec{u} - \vec{v}) = \vec{u}^2 - \vec{v}^2$$

<u>Démonstrations</u> : les 4 premières démonstrations utilisent l'expression analytique du produit scalaire dans un repère orthonormé, les 3 dernières utilisent les 2 propriétés de distributivité et la propriété de commutativité.

Dem

- 1) Avec $\vec{u}.\vec{v} = \frac{1}{2}(\|\vec{u} + \vec{v}\|^2 \|\vec{u}\|^2 \|\vec{v}\|^2)$ La somme des vecteurs est commutative et la somme des nombres également donc $\vec{u}.\vec{v} = \vec{v}.\vec{u}$
- 2) Dans un repère orthonormé $(0; \vec{l}, \vec{j})$, soit les vecteurs $\vec{u}(x, y)$ et $\vec{v}(x', y')$ et $\vec{w}(x'', y'')$

$$\vec{v} + \vec{w}$$
: $(x' + x'', y' + y'')$

$$\vec{u} \cdot (\vec{v} + \vec{w}) = x(x' + x'') + y(y' + y'') = xx' + xx'' + yy' + yy''$$

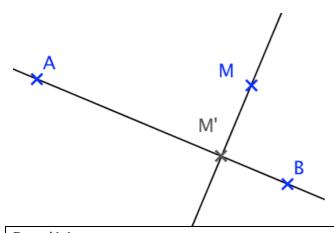
Or
$$\vec{u}$$
. $\vec{v} = xx' + yy'et \vec{u}$. $\vec{w} = xx'' + yy''$

Donc \vec{u} . $(\vec{v} + \vec{w}) = \vec{u}$. $\vec{v} + \vec{u}$. \vec{w}

VII Projection orthogonale

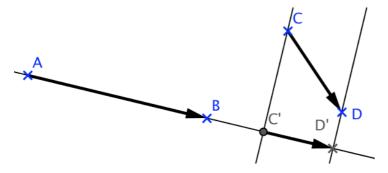
Définition:

Le projeté orthogonal d'un point M sur une droite (d) est le **point d'intersection M'** de la perpendiculaire à (d) passant par M et la droite (d)



Propriété:

Si \overrightarrow{AB} et \overrightarrow{CD} sont 2 vecteurs non nuls et C' et D' sont les projetés orthogonaux de C et D sur la droite (AB), alors \overrightarrow{AB} . $\overrightarrow{CD} = \overrightarrow{AB}$. $\overrightarrow{C'D'}$



$$\underline{\mathrm{Dem}}: \overrightarrow{AB}. \overrightarrow{BC} = \overrightarrow{AB}. \left(\overrightarrow{CC'} + \overrightarrow{C'D'} + \overrightarrow{D'D}\right)$$

$$\overrightarrow{AB}.\overrightarrow{BC} = \overrightarrow{AB}.\overrightarrow{CC'} + \overrightarrow{AB}.\overrightarrow{C'D'} + \overrightarrow{AB}.\overrightarrow{D'D}$$

Or \overrightarrow{AB} . $\overrightarrow{CC'} = 0$ car $\overrightarrow{AB} \perp \overrightarrow{CC'}$; C'étant le projeté orthogonal de C sur (AB),

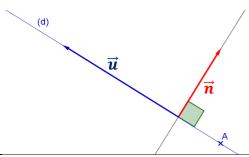
de même \overrightarrow{AB} . $\overrightarrow{D'D} = 0$

Donc \overrightarrow{AB} , $\overrightarrow{BC} = \overrightarrow{AB}$, $\overrightarrow{C'D'}$

VIII Vecteur normal à une droite

<u>Définition</u>: Un vecteur <u>non nul</u> \vec{n} est normal à une droite (d) signifie que \vec{n} est orthogonal à un vecteur directeur \vec{u} de la droite (d).

Conséquence : \vec{n} est alors orthogonal à tout vecteur directeur de (d)



Propriété:

Le point M appartient à la droite (d) passant par A et de vecteur normal \vec{n} si et seulement si \overrightarrow{AM} . $\vec{n} = 0$

<u>Dém</u>: soit d'une droite, \vec{u} un vecteur directeur de d et \vec{n} un vecteur normal

Démontrons que $M \in (d) \Rightarrow \overrightarrow{AM} \cdot \overrightarrow{n} = 0$

 $M \in (d) \Leftrightarrow \exists k \in \mathbb{R}, \overrightarrow{AM} = k\overrightarrow{u}$

Or \vec{n} est un vecteur normal à (d) donc \vec{u} . $\vec{n} = 0$

Calculons $\overrightarrow{AM} \cdot \vec{n} : \overrightarrow{AM} \cdot \vec{n} = (k\vec{u}) \cdot \vec{n} = k(\vec{u} \cdot \vec{n}) = k \times 0 = 0$

Réciproque : démontrons que \overrightarrow{AM} . $\overrightarrow{n} = 0 \Rightarrow M \in (d)$

 $\overrightarrow{AM} \cdot \overrightarrow{n} = 0$ avec $\overrightarrow{n} \neq \overrightarrow{0}$ or $\overrightarrow{u} \cdot \overrightarrow{n} = 0$ et $\overrightarrow{u} \neq \overrightarrow{0}$ $\exists k \in \mathbb{R}, \overrightarrow{AM} = k\overrightarrow{u}$ (Propriété admise : les vecteurs orthogonaux à un même vecteur sont tous colinéaires) donc $M \in (d)$

IX Équation d'une droite calculée en utilisant le vecteur normal

Propriété:

Le vecteur non nul $\vec{n}(a; b)$ est normal à la droite $(d) \Leftrightarrow \text{La droite } (d)$ a pour équation cartésienne : ax + by + c = 0 avec $(a; b) \neq (0; 0)$

<u>Ne pas confondre</u> avec l'équation cartésienne obtenue à partir d'un vecteur directeur $\vec{u}:(-b;a)$

Dém:

 (\Rightarrow) Le vecteur non nul $\vec{n}(a;b)$ est normal à la droite (d)

Soit $A(x_A; y_A)$ un point de la droite (d),

 $M(x; y) \in (d) \Leftrightarrow \overrightarrow{AM} \cdot \overrightarrow{n} = 0 \text{ soit } (x - x_A)a + (y - y_A)b = 0$

Soit $ax + by - x_A a - y_A b = 0$ Soit ax + by + c = 0

En posant $c = -x_A a - y_A b$

(\Leftarrow) La droite (d) a pour équation ax + by + c = 0

 $avec(a; b) \neq (0; 0)$ donc $\vec{u}(-b; a)$ est un vecteur directeur de la droite (d). Soit le vecteur $\vec{n}(a; b)$:

 \vec{n} . $\vec{u} = a \times (-b) + b \times a = -ab + ab = 0$

Le vecteur non nul $\vec{n}(a; b)$ est normal à la droite (d)