DST commun de mathématiques correction

1/4/15

Exercice 1

1) Etude du signe de 3-2x et 4x+1

3-2x>0

4x+1>0

-2x>-3

4x>-1

x<3/2

x > -1/4

X \ 3 / 2	·/ -1/ -T		
x	-∞ -1	1/4 3	$3/2 + \infty$
3-2x	+	+	-
4x + 1	-	+	+
(3-2x)(4x+1)	-	+	-

$$S =]-\infty; -1/4] \cup [3/2; +\infty[$$

2) x-1>0	x+1>0	3-x>0
x>1	x>-1	x<3

X	-∞ -1	[1 3	3 +
	∞			
x - 1	-	-	+	+
x + 1	-	+	+	+
3 - x	+	+	+	-
$\frac{(x-1)(x+1)}{(3-x)}$	+	-	+	-

$$S = [-1;1] \cup]3; +\infty[$$

Exercice 2: Partie A:

1. L'oiseau a commencé son plongeon à l'abscisse 0. h(0)=5. Il se trouvait donc à la hauteur 5m.

2.

х	0	1	2	2,5	3	3,5	4	5	6
h(x)	5	0	-3	-3,75	-4	-3,75	-3	0	5

4. Par lecture graphique h est **décroissante sur** $]-\infty;3]$ et **croissante sur** $[3;+\infty[$, La hauteur de l'oiseau est **minimale à 3m** de la rive.

Parie B:

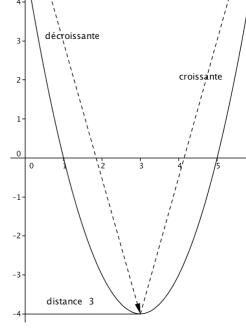
1.
$$(x-3)^2 - 4 = x^2 - 6x + 9 - 4 = x^2 - 6x + 9 = h(x)$$

2. La forme canonique d'une fonction polynôme de degré 2 est $x \mapsto a(x-\alpha)^2 + \beta$. Si a>0, elle est décroissante sur $]-\infty;\alpha]$ et croissante sur $[\alpha; +\infty[$. Ici a>0 car a = 1, α =3 et β =-4 donc **h est décroissante sur** [0,3] et croissante sur [3;6].

3. (a) 1,5, x et 2 appartiennent à l'intervalle [0,3] or h est décroissante sur [0;3] donc si $1,5 \le x \le 2$ alors $h(1,5) \ge h(x) \ge h(2)$ et donc

$$-1,75 \ge h(x) \ge -3$$
 $h(x) \in [-3,-1,75]$

(b) 3, x et 4 appartiennent à l'intervalle [3;6] or h est croissante sur [3;6] donc si $3 \le x \le 4$ alors $h(3) \le h(x) \le h(4)$ et donc $-4 \le h(x) \le -3$ $|h(x) \in [-4; -3]$



4. Le sommet de la parabole a pour coordonnées $(\alpha; \beta)$, Lorsque a>0, β est son minimum, atteint en α . Ici, le minimum est -4, atteint en 3

5.

x	0	6
h(x)	5	5

6. L'oiseau est entré ou sorti de l'eau lorsque son ordonnée est nulle $h(x) = 0 \text{ c'est à dire } (x-3)^2 - 4 = 0$ $(x-3)^2 - 4 = 0 \Leftrightarrow (x-3+2)(x-3-2) = 0 \Leftrightarrow (x-1)(x-5) = 0$ C'est une équation produit nulle. $S = \{1,5\}$

$$(x-3)^2 - 4 = 0 \Leftrightarrow (x-3+2)(x-3-2) = 0 \Leftrightarrow (x-1)(x-5) = 0$$

7.
$$h(x) < 0 \Leftrightarrow (x-1)(x-5) < 0$$

Ce sont les abscisses des points d'intersection de la courbe avec l'axe des abscisses : c'est bien 1m et 3m.

x	- ∞	1 5	5 +
	∞		
x - 1	-	+	+
x - 5	-	-	+
(x-1)(x-5)	+	-	+

Exercice 3:

- 1) La droite (IP) passe par les points I(-6;2,5) et P(-6;-2,5) et ces deux points ont la même abscisse donc l'équation de (IP) est de la forme x = k ici (IP): x = -6
- 2) Le sommet de la parabole C_f a pour coordonnées (0;2) La forme canonique de la fonction f (voir exercice 2 question 4.) est donc $f(x) = a(x-0)^2 + 2$ donc $f(x) = ax^2 + 2$. De plus et C_f passe par le points (4;0) donc

$$f(4) = 0 \Leftrightarrow a \times 4^2 + 2 = 0 \Leftrightarrow a = \frac{-2}{16} = -\frac{1}{8} \text{ et donc } f(x) = -\frac{1}{8}x^2 + 2$$

De même le sommet de la parabole C_g a pour coordonnées (0;-2) $g(x) = ax^2 - 2$ De plus et C_g passe par le points

(4;0) donc
$$g(4) = 0 \Leftrightarrow a \times 4^2 - 2 = 0 \Leftrightarrow a = \frac{2}{16} = \frac{1}{8}$$
 et donc $g(x) = \frac{1}{8}x^2 - 2$

Exercice 4:

1) A rajouter...à la main

2)
$$P(\overline{F}) = \frac{nb \text{ issues favorables à } \overline{F}}{nb \text{ total d'issues}} \text{ donc } P(\overline{F}) = \frac{5}{80} P(\overline{F}) = \frac{1}{16}$$

3) F∪ G est l'événement : "le poisson est grand ou frais"

 $\overline{F} \cap \overline{G}$ est l'événement "le poisson est petit et n'est pas frais"

FUG est l'événement : "le poisson ne fait pas parti des grand ou des frais donc il est petit et n'est pas frais"

 $P(F \cup G) = 1 - P(\overline{F \cup G})$ or il y a 2 poissons petits et pas frais.

$$P(\overline{F \cup G}) = \frac{2}{80} = \frac{1}{40} \quad \text{donc} \quad P(F \cup G) = 1 - \frac{1}{40}; \quad \boxed{P(F \cup G) = \frac{39}{40}}$$

et
$$P(\overline{F} \cap \overline{G}) = P(\overline{F \cup G}) = \frac{1}{40}$$

$$P(F \cap G) = P(G) + P(F) - P(F \cup G)$$

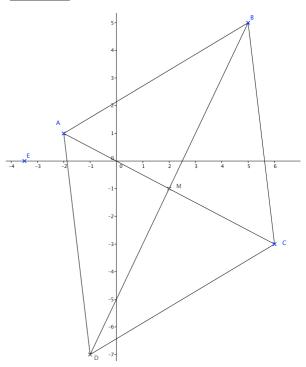
avec
$$P(G) = 1 - P(G) = 1 - \frac{15}{80} = \frac{65}{80}$$

et
$$P(F) = 1 - P(\overline{F}) = 1 - \frac{5}{80} = \frac{75}{80}$$

$$P(F \cap G) = \frac{65}{80} + \frac{75}{80} - \frac{39}{40} = \frac{62}{80}$$
 donc $P(F \cap G) = \frac{31}{40}$

4)
$$P = \frac{nb \text{ issues favorables}}{nb \text{ total } d \text{'issues}} = \frac{13}{15}$$

Exercice 5:



2)
$$\overrightarrow{AB}(x_B - x_A; y_B - y_A)$$
 et $\overrightarrow{AE}(x_E - x_A; y_E - y_A)$
 $\overrightarrow{AB}(5+2;5-1)$ $\overrightarrow{AE}(-3,5+2;0-1)$
 $\overrightarrow{AE}(7;4)$ $\overrightarrow{AE}(-1,5;-1)$

Les vecteurs u(x; y) et v(x'; y') sont colinéaires si et seulement si xy' - x'y = 0. Ici $7 \times (-1) - 4 \times (-1,5) = -1$ donc les vecteurs \overrightarrow{AB} et \overrightarrow{AE} ne sont pas colinéaires donc les

points A, E et B ne sont pas alignés

3)
$$x_M = \frac{x_A + x_C}{2} = 2$$
 et $y_M = \frac{y_A + y_C}{2} = -1$ donc $M(2;-1)$

a) Si ABCD est un parallélogramme alors $\overrightarrow{AB} = \overrightarrow{DC}$ or $\overrightarrow{AB}(7,4)$ et $\overrightarrow{DC}(6-x_D,-3-y_D)$. Or si deux vecteurs sont égaux alors leurs coordonnées sont égaux. Donc $6 - x_D = 7$ et $-3 - y_D = 4$ on obtient $\boxed{D(-1;-7)}$

b)
$$MA = \sqrt{(x_A - x_M)^2 + (y_A - y_M)^2}$$
 de même $MB = \sqrt{(5-2)^2 + (5+1)^2}$ et $BA = \sqrt{(-2-5)^2 + (1-5)^2}$

$$MB = \sqrt{(5-2)^2 + (5+1)^2}$$
 et

$$BA = \sqrt{(-2-5)^2 + (1-5)}$$

$$MA = \sqrt{(-2-2)^2 + (1+1)^2} = \sqrt{20}$$
 donc MA²=20 $MB = \sqrt{45}$ donc MB²=45 $BA = \sqrt{65}$ donc BA²=65

$$MB = \sqrt{45}$$
 donc MB²=45

$$BA = \sqrt{65}$$
 donc BA²=65

On constate que MA²+ MB²= BA² D'après le théorème de Pythagore ABM est rectangle en M.

c) M est le milieu de la diagonale [AC] du parallélogramme ABCD. C'est donc le point d'intersection de ses diagonales. ABCD est un parallélogramme dont les diagonales sont perpendiculaires donc c'est un losange.

Exercice 6:

2)

1) a) $f(2) = 2^2 - 2 - 3 = -1$ et $f(3) = 3^2 - 3 - 3 = 3$ donc f(2) < 0 et f(3) > 0

b) $f(2,5) = 2,5^2 - 2,5 - 3 = 0,75$ donc f(2,5) > 0.

c) La solution se trouve dans l'intervalle [2 ; 2,5] car f(2)<0 et f(2,5)>0 donc le point de la courbe, d'abscisse 2 est en dessous de l'axe des abscisses et le point d'abscisse 2,5 est au dessus. L'intersection se trouve donc entre 2 et

2,5.

1^{er} passage 2^{ème} passage 3^{ème} passage 4^{ème} passage Initialisation 2,3125 2,5 2,375 Χ 2,25 x^2-x-3 0,03515625 / 0,265625 0,75 -0,1875 2,25 2 2 2,25 2,25 Α 2,3125 3 В 2,5 2,5 2,375 0,0625 B - A 1 0,5 0,25 0,125

3) L'algorithme affiche 2,3125. C'est une valeur approchée à 0,1 près de la solution de l'équation $x^2 - x - 3 = 0$ située dans [2;3].

Bonus: En utilisant la forme canonique, puis factorisée de la fonction f, donner la valeur exacte de la solution positive de l'équation $x^2 - x - 3 = 0$.