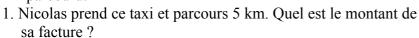
Interrogation de mathématiques Fonctions carrée et inverse

Exercice 1 : Pour chaque question, entourer la ou les réponses exactes :

	a	b	c	d
Les réels tels que $x^2 \le 4$ sont ceux qui vérifient	$x \le 2ET x \le -2$	$x \le 2OU x \le -2$	$x \le 2ET x \ge -2$	$x \le 2OU x \ge -2$
Soit x le réel tel que $x > 4$. Alors on peut affirmer que :	$\frac{1}{x} > \frac{1}{4}$	$0 < \frac{1}{x} < \frac{1}{4}$	<i>x</i> ² > 16	$x^2 > 2$
Soit x le réel tel que $\frac{1}{3} < x < \frac{3}{4}$. Alors on peut affirmer que :	$\frac{1}{3} < x < \frac{3}{4}$	$\frac{3}{4} < x < \frac{1}{3}$	$3 < \frac{1}{x}$	$\frac{4}{3} < \frac{1}{x} < 3$
Sachant que $x^2 < \frac{3}{4}$ on peut affirmer que :	$x < \frac{\sqrt{3}}{2}$	$\boxed{\frac{-\sqrt{3}}{2} < x < \frac{\sqrt{3}}{2}}$	$x > \frac{-\sqrt{3}}{2}$	<i>x</i> > 0

Exercice 2: Représenter graphiquement la fonction $x \mapsto 0.5x^2$ pour $x \in [-3;3]$

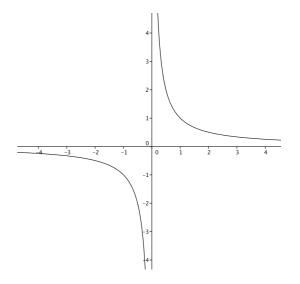

Exercice 3 : En utilisant les sens de variation des fonctions :

- 1) donner un encadrement de x^2 sachant que 9 < x < 1
- 2) donner un encadrement de $\frac{1}{x}$ sachant que 1 < x < 4

Exercice 4 : En utilisant la courbe ci-contre, résoudre

graphiquement: $-1 \le \frac{1}{x} \le 4$

Exercice 5 : Une course de taxi est facturée selon le modèle suivant : une prise en charge de 2,50€ au départ, puis 1,20€ par km parcouru.


Quel est le prix moyen par km parcouru?

Même question si le parcours de Nicola en taxi est 12km.

- 2. On appelle x le nombre de km parcourus en taxi. Exprimer en fonction de x le montant f(x) de la facture.
- 3. Quelle est la nature de la fonction f? Précisez ses variations.
- 4. On appelle g(x) le prix moyen par km parcouru. Montrer que $g(x) = 1, 2 + \frac{2,5}{x}$.
- 5. Montrer que la fonction g est décroissante sur]o;+∞[.
- 6. Johan a pris ce taxi et le prix moyen au km de sa course est 1,30€. Calculer la longueur de son trajet et le montant de sa facture.
- 7. Arthur aussi a utilisé ce taxi ; il affirme que son trajet lui est revenu à 1€ le km. Que penser de cette affirmation ?

Bonus : Comparaison de x^2 et 1/x

- 1) Justifier que pour x < 0 on a $1/x < x^2$.
- 2) Montrer que pour tout x non nul, on a : $x^2 \frac{1}{x} = \frac{(x-1)(x^2+x+1)}{x}$
- 3) Justifier alors que pour x > 0; $x^2 1/x$ a le même signe que x 1.
- 4) Donner le tableau de signe de (x 1) et conclure.

